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ABSTRACT:

Ex situ analysis to characterize subsurface media for gamma-emitting radionuclides is time-consuming
and costly. A Site Characterization and Analysis Penetrometer System (SCAPS) spectral gamma penetro-
meter probe was designed using newly developed small-diameter high-pressure xenon gas gamma ray
detector technology for the in situ speciation (identification) and quantification of subsurface gamma-
emitting contaminants. This report documents the design, calibration, laboratory studies, and functionality
field demonstration conducted to characterize the capabilities and limitations of the xenon spectral
gamma probe. Results and comparative analysis of side-by-side simultaneous laboratory investiga-
tion/evaluation studies using SCAPS xenon spectral gamma and sodium iodine spectral gamma probes
are also documented.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not
to be construed as an official Department of the Army position unless so designated by other authorized documents.
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Introduction

The U.S. Army Engineer Research and Development Center (ERDC), part of
which was formerly known as the Waterways Experiment Station (WES),
designed, fabricated, calibrated, and evaluated the first Site Characterization and
Analysis Penetrometer System (SCAPS) sodium iodide (Nal) spectral gamma
penetrometer probe system in 1996 in support of the Department of Energy
(DOE) EM-50, Office of Science and Technology. A SCAPS Nal spectral
gamma probe was successfully demonstrated at the DOE Savannah River Site,
South Carolina, R-Reactor Seepage Basin in 1997 (Argonne National Laboratory
1997: Morgan et al. 1997). The DOE documented savings of more than $800,000
using the SCAPS in situ penetrometer interrogation system over conventional
sampling technologies during the Savannah River Site SCAPS Spectral Gamma
Technology Demonstration (Morgan et al. 1998).

ERDC, in support of the DOE Hanford Facility, designed and developed a
SCAPS multisensor penetrometer probe for the simultaneous detection of
gamma-emitting radionuclides, heavy metals, depth, and soil classification. The
multisensor probe included a Nal spectral gamma detection and speciation sys-
tem, an isotopic excited x-ray fluorescence (XRF) metals speciation system, a
depth meter, and soil classification sensors that provided co-located gamma,
metals, soil classification, and depth data (Ballard and Cullinane 1998).

ERDC, in support of the DOE National Energy Technology Laboratory
(NETL), formerly the Federal Energy Technology Center (FETC), designed, fab-
ricated, calibrated, and evaluated the first high-pressure xenon (Xe) gas spectral
gamma penetrometer probe for SCAPS direct-push field applications. A newly
developed small-diameter, high-pressure xenon gas gamma detector, manufac-
tured by Mirmar Sensor, Inc., was selected for integration in a SCAPS penetro-
meter probe with soil classification sensors. The multisensor technology has the
capability to conduct in situ subsurface analysis of gamma activity co-located
with soil classification, depth, and soil layering data (Ballard et al. 2000, 2001).

ERDC designed and fabricated a special penetrometer probe housing and
interface components to accommodate the dimensions of a small-diameter
Mirmar xenon gas gamma detector/preamplifier assembly. The probe/detector
assembly was integrated with a standard-configuration soil classification module
and umbilical cable. Spectral gamma detector calibration and laboratory evalua-
tion studies were conducted at the Mississippi State University (MSU) Radio-
logical Sensor Calibration Facility, Starkville, Mississippi. Personnel of the
ERDC, MSU, and Alion Science and Technology (ERDC on-site contract
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emplovees) conducted laboratory evaluation and calibration experiments using
unique MSU-developed gamma-emitting radionuclide calibration sources. The
functionality field evaluation reported herein was conducted at the ERDC, Vicks-
burg, Mississippi. using the ERDC 20-ton SCAPS research truck to document the
capabilities and functionality of the xenon spectral gamma probe to detect and
speciate gamma activity in subsurface soil media in situ. The probe was operated
in stationary and continuous-push modes.

This report documents the design and fabrication of the xenon spectral
gamma probe, ERDC laboratory evaluation experiments, MSU calibration proce-
dures and results, ERDC functionality field evaluation, and operational proce-
dures and results.

Chapter 1
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2 SCAPS Xenon Spectral
Gamma Penetrometer
Probe Components

Xenon Gas Gamma Detector/Preamplifier
Assembly

Mirmar Sensor, LLC, developed a unique gamma detection technology for
cone penetrometer deployment. The Mirmar high-pressure xenon gas gamma
detector/preamplifier assembly (Figure 1) is housed in a stainless steel cylinder
measuring 4.45 cm in diameter x 33.02 cm long (Figure 2). The sealed gas
chamber has an active volume of 131.5 cm’ (4.06 cm diameter x 10.16 cm long).
The gas chamber contains an internal electrically isolated grid and acts as an
ionization chamber. The gas chamber is evacuated and filled with a gas mixture
containing 99.7 percent (high purity) xenon gas plus 0.3 percent hydrogen gas.
The density of the gas mixture is 0.5 g/cm’. The outer surface of the cylinder is
wrapped with an isolated conducting surface and forms a capacitor when high
voltage is applied to the internal grid. The high-purity xenon gas acts as an ioni-
zation medium that reacts when gamma ray energy enters the high-pressure gas
chamber. Spectral gamma energies are detected via the ionization of xenon gas
particles, and the ionized energy is captured by the grid and transferred electroni-
cally via the preamplifier for spectral energy analysis. Thus the Mirmar xenon
gas gamma detection system has the capability to capture unique gamma-
emitting radionuclide emissions and to speciate (identify) multiple gamma emis-
sions simultaneously using conventional nuclear instrument module (NIM)
equipment and energy spectrum analysis techniques.

Probe Components

ERDC designed and fabricated SCAPS penetrometer probe components to
accommodate the dimensions of the SCAPS truck’s hydraulic chuck mechanism
and the dimensions of the Mirmar xenon gas gamma detector/preamplifier
assembly. A concept drawing of the SCAPS spectral gamma probe with soil clas-
sification sensors and SCAPS truck-mounted NIM data acquisition and process-
ing system equipment is provided in Figure 3. The probe housing and interface
components were fabricated in the ERDC machine shop from solid-stock

Chapter 2  SCAPS Xenon Spectral Gamma Penetrometer Probe Components



6.35-cm- (2.5-in.-) diameter H-13 tool steel bars. The probe housing was
designed with 6.033-cm (2.375-in.) outside diameter (OD) dimensions and with
0.64-cm- (0.25-in.-) thick walls (Figure 4).

Figure 1. Mirmar-developed high-pressure xenon gas gamma detector/
preamplifier assembly (photo by Mirmar Sensor, LLC)

Figure 2. Mirmar-developed xenon gas gamma detector preamplifier (photo by
Mirmar Sensor, LLC)

The wall thickness of the probe housing was optimized to enhance the dura-
bility of the probe, to maximize gamma ray penetration through the probe steel
housing, and to accommodate the OD of the Mirmar gamma detector. A thicker
wall dimension would have been desirable but would have increased the attenua-
tion of incident gamma rays.

Chapter2  SCAPS Xenon Spectral Gamma Penetrometer Probe Components
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Figure 3. SCAPS xenon gas spectral gamma probe configuration

Probe components were fabricated to interface to a commercial 5.08-cm-
(2-in.-) OD soil classification module (Figure 5) and to standard 4.45-cm-
(1.75-in.-) OD penetrometer push rods (Figure 6). The steel probe housing and
interface components were fabricated from solid H-13 steel rods. After fabrica-
tion, the steel probe components underwent commercial heat treatment and were
hardened to 45-49 RC (Rockwell hardness). Probe components were hardened
(heat treated) to provide added abrasion resistance and strength to the probe. The
steel hardening process minimizes abrasive-induced scarring of probe surfaces
that could become contaminated with radioactive subsurface soil.

Chapter 2 SCAPS Xenon Spectral Gamma Penetrometer Probe Components



SECTION A-A
SCALE1/2

T T T F

Figure 4. Xenon gas gamma detector probe housing design drawings

Umbilical Cable Components

The ERDC designed a SCAPS umbilical cable to interface subsurface spec-
tral gamma and soil classification components with surface-mounted electrical
power and data acquisition/processing equipment. The umbilical cable is
deploved through hollow push rods that are used to hydraulically advance the
spectral gamma penetrometer probe into subsurface media. The umbilical cable is
approximately 50 m in length and is made up of 17 independently isolated data
and power transmission lines plus one drain wire (for static electricity grounding)
and is covered with a black polyurethane outer jacket with a minimum thickness
of 0.13 cm (0.05 in.). The total diameter of the umbilical cable is approximately
1.43 cm (0.5625 in.) (Figure 7). The number-coded umbilical cable transmission
lines are described in Table 1.

Chapter2 SCAPS Xenon Spectral Gamma Penetrometer Probe Components
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Figure 7. Umbilical cable configuration for the xenon spectral gamma/soil
classification probe

Table 1
Xenon Gas Spectral Gamma/Soil Classification Probe Umbilical
Cable Components

Component No. I Transmission Line Color and Type

Xenon Gas Spectral Gamma Detection Module

2 Reynolds P/N 167-2896, 5-kV high-voltage cable, 0.095-in. diameter (white)

2 Reynolds P/N 167-2896, 1- to 2-kV high-voltage cable, 0.095-in. diameter
(white)

1 Belden P/N 84316 50-ohm coaxial signal cable,
0.098-in. diameter (brown)

5 +/- 6-V, 26 AWG shielded twisted pair (blue/white)

5 Ground and common, 26 AWG shielded twisted pair (blue/black)

S Spare, 26 AWG shielded twisted pair (blue/green)

Soil Classification Module
26 AWG shielded twisted pair (red/black)
26 AWG shielded twisted pair (black/white)
26 AWG shielded twisted pair (green/white)
26 AWG shielded twisted pair (green/red)

ojlojlo|o
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3 Detector Laboratory
Evaluation Studies

Laboratory evaluation investigations and checkout experiments were con-
ducted by ERDC at the MSU Calibration Facility to determine the functionality
and response characteristics of the Mirmar xenon gas gamma detector. The
Mirmar gamma detector was studied with and without the steel probe housing.

Laboratory Radiological Background Minimization

Laboratory investigations were conducted to determine the performance
characteristics of the Mirmar small-diameter xenon gas gamma detector before
and after the detector was installed in a steel penetrometer housing. Laboratory
experiments were conducted with 2-in.-thick lead bricks placed beneath and to
cach side of the detector to minimize background radiation. The laboratory con-
figuration for these investigations was similar to the xenon and sodium iodide
spectral gamma probes configuration shown in Figure 8. Gamma energy spectra
of background radiation were collected for each laboratory configuration and
were used to strip naturally occurring radioactive background from radionuclide
gamma energy spectra.

Effects of Vibration-Induced Electronic Noise

During laboratory investigations, it was noted that vibration appeared to
induce electronic noise into the spectral signature generated by the xenon gas
gamma detector. Natural building vibration was attributed to air conditioning and
positive air pressure that was maintained in the laboratory. Background radiation
was measured using the Mirmar xenon gas gamma detector in two configura-
tions: (1) configuration 1 - detector response measured without vibration isola-
tion; and (2) configuration 2 - detector response measured with vibration isola-
tion. In each configuration, gross gamma activity and gamma energy spectral
data were collected for 3600 seconds.

The Mirmar gamma detector in configuration 1 was positioned directly on

lead bricks that were lying on a standard laboratory bench surface. Vibration
isolation material was not used to minimize vibration-induced electronic noise. In

Chapter 3  Detector Laboratory Evaluation Studies



10

this configuration, the background produced 217,377 counts of gamma activity
and produced the logarithmic gamma energy spectrum presented in Figure 9.

Figure 8. Laboratory configuration of xenon (rear probe) and sodium iodide
spectral gamma probes with lead brick shielding, Mississippi State
University Radiological Laboratory
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Figure 9. Xenon gas gamma detector logarithmic energy spectrum of naturally
occurring laboratory background radiation without vibration isolation
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Chapter 3

The Mirmar gamma detector in configuration 2 was positioned on 2.54-cm-
thick foam packing material and placed in the lead-shielded laboratory bench
setup of configuration 1. In this vibration-minimized configuration, the back-
ground radiation produced 17,481 counts of gamma activity and produced the
logarithmic nuclear energy spectrum in Figure 10. The use of vibration isolation
material resulted in a 92-percent reduction in gross gamma activity counts. The
difference in gross counts of gamma activity is equivalent to vibration-induced
electronic noise. The results of this experiment verified that vibration-induced
signals are introduced into spectral data and may produce a pseudo-spectrum of
gamma activity. A resulting pseudo gamma spectrum was produced by stripping
(subtracting) the spectrum of Figure 10 from Figure 9 and is presented in loga-
rithmic and linear displays in Figures 11 and 12, respectively.
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Figure 10. Xenon gas gamma detector logarithmic energy spectrum of naturally
occurring laboratory background radiation with vibration isolation

Based on the results of these background laboratory investigations, vibration-
induced electronic noise may be produced for some modes of SCAPS penetro-
meter truck deployment of the gridded xenon gas gamma detector. The amplitude
of electronic noise is expected to vary with changes in subsurface soil media.
Induced electronic noise is also likely to occur during continuous-push gamma
detector field deployment activities. However, minimal vibration-induced elec-
tronic noise is expected when the probe is stationary and is conducting spectral
gamma data collection activities. A study to determine the range of vibration-
induced electronic noise for varying soil media and the effects on xenon gas
gamma detector performance is beyond the scope of this project.

Detector Laboratory Evaluation Studies
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Spectral Resolution Verification Study

Laboratory investigations were conducted to determine the spectral resolu-
tion of the Mirmar xenon gas gamma detector/preamplifier assembly. The
Mirmar detector was placed within the lead brick background minimization
chamber described above. During the laboratory evaluation/checkout experiment,
1-uCi calibration sources of Cs-137 and Co-60 were placed 10 cm from the
active portion of the xenon gamma detector ionization chamber of the Mirmar
gamma detector. The Mirmar small-diameter gamma detector provided approxi-
mately 2.45-percent resolution for the 661.62-keV spectral energy line of Cs-137
and 1.6-percent resolution for the 1332.50-keV spectral energy line of Co-60. A
gamma energy spectrum produced during the spectral resolution experiment is
presented in Figure 13.
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Figure 13. Xenon gas gamma detector energy spectrum of 1 uCi Cs-137 and
1 pCi Co-60 laboratory sources (acquisition period: 1800 seconds)

Spectral gamma resolution data were also acquired at the MSU Calibration
Facility using a unique MSU-designed thorium-232 calibration disk. The cali-
bration disk was fabricated by MSU by spiking wet cement with a measured
quantity of thorium oxide powder (thorium-232 with thorium progeny in equilib-
rium) to produce a 50 pCi/g standard and casting it in a mold measuring 81.3 cm
in diameter by 5.1 cm thick (Figure 14).
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Figure 14. Calibration disk designed by Mississippi State University using
thorium-232 with progeny in equilibrium (diameter 81.3 cm; thickness
5.1cm)

The xenon gas gamma detector assembly was placed in a horizontal position
approximately 10 cm above the center of the 50-pCi/g thorium calibration disk.
A gamma ray spectrum of thorium-232 and thorium progeny in equilibrium was
collected using the above configuration and is presented in Figure 15. The xenon
gas gamma detector demonstrated the capability to fully resolve the two spectral
energy lines of actinium-228, a thorium-232 progeny (daughter product), at
911 keV and 969 keV (Figure 15).

Since the two actinium-228 spectral energy lines at 911 keV and 969 keV
were fully resolved in the above xenon gas spectral gamma resolution experi-
ment, a similar laboratory experiment was conducted using a 7.62-cm (3-in.) x
7.62-cm sodium iodide gamma detector 10 cm above the center of the MSU
thorium-232 with thorium progeny calibration disk (Figure 16).

The sodium iodide gamma detector demonstrated the capability to detect the
two spectral energy lines of actinium-228 but produced a smeared camel-humped
peak (i.e., it was unable to separate 911 keV and 969 keV into resolved individ-
ual peaks) (Figure 17).

Additional experiments were conducted using a surrogate probe housing (i.c.,
placing the xenon gas gamma detector in a steel pipe with 0.64-cm wall thick-
ness). The xenon gas gamma detector was found to provide a narrower, more
defined peak (i.c., better resolution) than the peak provided by the Nal gamma
detector (Figure 18).
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Figure 16. Sodium iodide gamma detector with lead ring positioned 10 cm above
the Mississippi State University 50-pCi/g thorium-232 / thorium
progeny calibration disk (acquisition period: 1800 seconds)
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Figure 18. Xenon gas gamma detector energy spectrum collected over the
Mississippi State University 50-pCi/g thorium-232 / thorium progeny
calibration disk (acquisition period: 1800 seconds)
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4 Xenon Probe Calibration

Calibration Isotopes

Calibration isotopes were selected to span the range of photon energies nor-
mally encountered in environmental measurements. These isotopes were also
selected because their half-lives were less than a year, permitting a sequence of
measurements to be made with diminishing activity. A previous study (Morgan
etal. 1997) employed the same isotopes and activities, as well as the same soil.
Isotopes used during calibration, their half-lives, photon energies, and production
yield are shown in Table 2.

Table 2

Isotopes Used in Calibration Standard

Isotope Half-life, days Gamma Energy, keV Yield, y/dis
*'cr 27.70 320 0.0983
*Fe 44.47 1099 0.565

®Fe 44 .47 1290 0.432

Bgr 64.84 514 0.993
“ice 325 154 0.484

Calibration Media Preparation

Initial activity of each calibration isotope was 2.2 MBq on September 24,
2002. The isotopes were contained in a carrier solution of 0.1 M HCl on arrival at
the MSU Radiological Sensor Calibration Facility. The isotopes were diluted
with additional 0.1 M HCI on October 18, 2002. Approximately 640 mL of solu-
tion containing a mixture of all the isotopes was created in the MSU Radiological
Sensor Calibration Facility. Seven batches of calibration soil were prepared by
manually mixing 80 mL of calibration isotope solution into 22.72 kg of Memphis
loess soil. Each batch of soil was surveyed with a Nal gamma detector to verify
the uniform distribution of isotopes and placed in a large, 130.8-L polyvinyl
chloride (PVC) cylinder measuring 40.6 cm in diameter and 99.1 cm tall. After
the seven batches of soil were placed in the calibration cylinder, external surveys
were conducted using a sodium iodide gamma detector to confirm uniform distri-
bution of the calibration isotopes. Count rates were the same over all locations on
the surface of the cylinder and thus confirmed uniformity of isotopic distribution

Xenon Probe Calibration
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within the calibration media. Because the volume of the calibration cylinder was
large, the calibration media approximated an infinite medium, as would be
encountered in field assessments.

Xenon Gas Spectral Gamma Probe Calibration

The xenon spectral gamma probe was inserted in the middle of the vertically
standing calibration cylinder. In this configuration, the xenon spectral gamma
probe was surrounded by approximately 18.3 ¢m of calibration medium
(Figure 19).

Figure 19. Xenon gas spectral gamma probe inserted in calibration medium at
the Mississippi State University Radiological Sensor Calibration
Facility

A series of one-hour counts was initiated. Under job control of the host com-
puter, continuous data acquisition of spectra was established, which permitted
spectra to be acquired and saved hourly throughout the entire data acquisition
period, i.e., 24 spectra per day, 7 days per week, through the entire calibration
period. Spectra were saved on the disk drive of the data acquisition computer and
were used to document continuous operation of the xenon probe. The nuclear
instrument module data acquisition and processing system is shown in Figure 20.
In addition to the resolution and intrinsic efficiency, other long-term performance
capabilities were documented, e.g., the minimum detectible activity as the iso-
topes with shorter half-lives decayed.
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Figure 20. Nuclear instrument module data acquisition and processing system
equipment used during probe calibration at the Mississippi State
University Radiological Sensor Calibration Facility

Calibration Documentation

The response R to a point source attenuated through a distance x is given by
the inverse square law:

where

4= the linear attenuation coefficient of the attenuating medium (cm™)

r = the distance between the source and the location at which the
response R is to be determined

§ = the strength of the point source (photon/s)
The formula can be applied to a uniformly distributed source in a volume V.

The geometry is shown in Figure 21. The point source at  is SydV, where Sy is

the volumetric source strength in photon/cm’-s. For cylindrical geometry, the
volume element is

dV = pd pded:z

where

Xenon Probe Calibration
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p = the radial coordinate
¢ = the azimuthal coordinate

z = the axial coordinate

dz

Detector

Figure 21. Geometry for distributed source

The distance » from the element of volume and the observation point is

7
r=4p* + 2% ,orr = psecd,where =tan" —.

P

The response from an element of a uniformly distributed source is written

=%

e
4rr?
- px

dp =S, — pdpdpd:
4rr-

d¢=S,dv

Integrating over azimuth, we obtain the expression

e~y.i’
) 1
27"

d¢=S, pd pdz

Now the substitution » = psecé is made. Since z = ptané, for a given
value of p, the differential dz becomes dz = psec’ 8d0 .

For a detector within the cylinder along the axis, the limits of integration are
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R <p<R,
h<z<h,

where

R, = the inner radius of the attenuating medium
R, = the outer radius of the attenuating medium
h, = the lower limit of integration for the axial coordinate z
h, = the upper limit of integration for the axial coordinate z
If the zero for the z-axis is at the center of the cylinder, then 7, =—h,. Fora
detector located in the center of the cylinder containing a uniform distribution of

sources, the integration may be taken from z = 0 to z = /., and multiplied by 2 to
obtain the value for the source volume.

It is convenient to express the attenuation factor by employing the mean free
path definition b = g1, + s,t, , where the subscripts refer to two media, in this

case steel for the penetrometer and soil, and 7, and 7, are the distances in the
respective media normal to the z-axis. Since the integration is over the source
volume, it is carried out over the volume of the soil. Hence,

b=ut+m(p-R)

The integral for number flux ¢ is then expressed by the equation

S[ P]R2 Z]h e—bsecB
$=2| = ——— pdzd p
2 r 2o (psech)

Making the substitution dz = psec’ 8d6 , the flux becomes

PR, [6-4
$=S, | { | e"”‘“”d@}dz

p=R [ 6=0

where 6, =tan™ .
P

A spreadsheet-based scheme vields an approximate value using the numeri-
cal approximation

=R, | 6=8 N, [ Ny
$=S5, j l: I e*”‘”"d&} dz ~ Z{Ze_b’“gf AOJ} Az,

p=R | 6=0 i=1 | j=1

For the calibration cylinder, the number of subintervals N. and Ng, along the
z- and B-coordinates, respectively, are each taken to be 30.

Chapter 4 Xenon Probe Calibration



It is desired to obtain the value that an infinite soil medium would yield. An
approximate value can be obtained by increasing 4, and R; until a limiting value
of the integral is found. The calibration result from the finite medium can be
multiplied by the ratio of infinite-medium integral to finite-medium integral to
obtain the calibration factor for an infinite medium.

It is necessary to obtain the calibration factor as a function of energy. Five
energies are available from the isotopes distributed in the soil.

Correction for semi-infinite medium

When the detector is deployed in the field, the response is attributable to
photons originating from any location. The flux at the detector location is then
approximated by extending the radius to co. When this is done, the integral value
changes.

Calculation of calibration coefficient

If a radionuclide is uniformly distributed over a region of indefinite extent,
the uncollided flux at a point from this distribution is given by

J=k j;%( J.:ze’b““”dﬁ)dp

where

s cmeiiliied i, 220

cm’ —s

p = radial coordinate, cm
b = mean free path parameter, dimensionless

6 = angular coordinate, @ =tan™' (ij , radians
p)

photon

cm’ —s

Sy = volumetric photon production rate,

Sy 1s determined from the equation

< —At
Sy =Sy "y
where
& . m dis
S,, = volumetric activity, —
cm’ —s

/. = decay constant of radionuclide, s

t = time since calibration, s
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photon

y = photon yield,

dis

This expression permits the definition of a calibration factor relating interac-
tion rate to volumetric source strength. The interaction rate within the detector is
proportional to the flux ¢. The flux ¢ is proportional to Sy. Therefore, the inter-
action rate is proportional to Sy. Define the calibration factor (CF)r by the
equation

S,z =(CF), (Count Rate),

where the subscript 7 denotes a finite medium. The volumetric source strength in
a finite medium is determined by multiplying the count rate by the calibration
factor (CF)g. For the calibration cylinder, the calibration factors have been
determined using spectra taken at various times.

For field applications, it is necessary to determine the calibration factor
(CF), which relates the count rate from a detector in a medium of infinite radial
extent. The equation is similar to that for the finite medium:

Sve = (CF) . (Count Rate) ,

where the subscript oo denotes the semi-infinite medium such as the ground at a
site.

Let I(H,R) denote the spatial integral for a finite medium. That is,
p=R| 6=8

I(H.R) = j [ | e"‘”‘“adﬁ} dz
p=R | 6=0

For an infinite medium the spatial integral may likewise be denoted by
I(H, o), defined by

p=x | =4
I(H,»)= J. j e %40 |dz
p=R, | 6=0

If we examine the semi-infinite medium in which the spatial contribution is

I(H, o) and in which the source strength distribution Sy exists, the flux is repre-
sented by

¢eo = SI'OI (st)
The finite medium flux for the same volumetric source strength is

¢ =Syol (H.R)
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The count rate, and the integral of the count rate over a specified period, is
proportional to the uncollided flux:

(CR), =K¢, and
(CR), = K¢,

Substituting in the analytic equations for flux,

CR

and

(CI’;)F _ 8,0 (H.R)

Since the volumetric source strength is proportional to the calibration factor,

(C—Ilj)‘ﬂ = (CF)OO LCII:,—)‘”I(H,OO)
and
(CR)F - (CF)F (CR)F I(H.R)

K K

Taking the ratio of these equations,

(CF)_ 1(H.)

el | 'h
(CF)FI(H,R) , whence

(eF). =@ T

The ratio was calculated using the double numerical integration scheme.
Integrations were performed for five photon energies. The ratios of the infinite-
medium spatial integrals to the finite-medium integrals are shown in Table 3 and
verify that the calibration medium volume was appropriate.

Table 3
Calibration Coefficient Ratios

I(H,R,)
Photon Energy (MeV) b, p(em™) 1 (H,Ry) 1 (H,) I(H,)
0.145 106 | 0.204 0.242874 0.2438 1.004
0.320 053 | 0.151 0.562403 0.5681 1.010
0.514 0.41 0.124 0.732451 0.7455 1.018
1.099 029 | 0.0876 1.018923 1.0596 1.040
1.292 026 | 0.0812 1.09845 1.1492 1.046
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Table 4 provides the calibration factor (CF)r for the finite cylinder used in
the measurement and the calculated calibration factor (CF)...

Table 4

Calibration Factor Summary

Energy (MeV) (CF)e (CF)w
0.145 10.37 10.41
0.320 410 414
0.514 2.44 2.48
1.099 0.476 0.495
1.292 0.315 0.329
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5 Xenon Probe/Sodium
lodide Probe Comparison

Laboratory Comparison in Calibration Media

The xenon gas spectral gamma probe and the sodium iodide spectral gamma
probe were each evaluated separately in a 40.6-cm-diameter x 99.1-cm-tall poly-
vinyl chloride (PVC) calibration cylinder filled with Memphis loess soil spiked
with the isotopes listed in Table 2. The probes were placed vertically along the
center line of the PVC cylinder with approximately 18.3 cm of Memphis loess
soil with uniformly distributed isotopes surrounding the probes.

The xenon probe, as described in Chapter 2, was fabricated with a 6.033-cm
outside diameter, 0.64-cm-thick steel wall probe housing. The xenon gas gamma
detector/preamplifier assembly was installed in the center of the steel probe and
consisted of a small-diameter, stainless steel, sealed 4.06-cm x 10.16-cm cylin-
drically shaped gas chamber (active volume). The high-purity xenon gas acted as
an ionization medium that reacted when gamma ray energy entered the high-
pressure gas chamber.

The sodium iodide probe was fabricated with a 4.45-cm outside diameter,
0.64-cm-thick steel wall probe housing. The Nal gamma detector/photomultiplier
tube assembly was installed in the center of the steel probe and consisted of a
small-diameter, stainless steel, sealed, 1.91-cm x 10.16-cm Nal crystal detector
(active volume).

Twelve 3600-second spectral gamma data sets were collected (six with the
sodium iodide spectral gamma probe and six with the xenon gas spectral gamma
probe). The gamma energy peaks for each isotope were analyzed to determine
arcas under the peaks. The resolution of each probe was calculated by dividing
the full width at half maximum taken from the energy spectrum by the photon
energy of the radionuclide gamma ray. The resolutions of the sodium iodide and
xenon gas spectral gamma probes were determined for the 514-keV gamma of
strontium-85. The resolution of the sodium iodide spectral gamma probe was
9.8 percent (Figure 22), and the resolution of the xenon gas spectral gamma
probe was 3.1 percent (Figure 23).
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Figure 22. Sodium iodide spectral gamma probe logarithimic energy spectrum
collected with the probe surrounded by 18.3 cm of radioisotope-spiked
soil medium. Mississippi State University Radiological Calibration
Facility (acquisition period: 3600 seconds)
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Figure 23. Xenon gas spectral gamma probe logarithimic energy spectrum
collected with the probe surrounded by 18.3 cm of radioisotope-spiked
soil medium. Mississippi State University Radiological Calibration
Facility (acquisition period: 3600 seconds)
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The concentration of each isotope in the soil mixture was calculated based on
the concentration of the initial mixture and the known half-life of each isotope.
The soil matrix, prepared as described in Chapter 4, had an initial activity of
2.2 MBgq for each isotope present at the creation of the solution on September 24,
2002. Since the levels of radioactivity (concentration) of these isotopes decay
continuously after creation, it is necessary to calculate the activity level at the
time the measurements were made. Table 5 shows the half-life, energy, and cor-
rected isotopic level of activity calculated for the matrix at the time that spectra
were acquired. In addition Table 5 contains the counts obtained by analysis of the
Xe and Nal spectra.

Table 5
Calculated Xe and Nal Areas and Isotope Concentrations

Isotope Half-life, days Energy, keV Matrix Conc., pCilg Xe, cts Nal, cts
*Gp 27.70 320 3 1,953 959

[ ®Fe 44.47 1,099 25.2 1,366 14,595
*Fe 44.47 1,290 19.3 901 9417
S5r 64.84 514 82.0 28,995 119,880
"iCe 32.50 154 10.5 No Peak | No Peak

Resolution Verification

The resolutions of the xenon gas and sodium iodide spectral gamma probes
were determined in the laboratory by placing 1 pCi Cs-137 and cobalt-60
laboratory calibration sources equidistant from the probes. In this configuration,
spectral gamma data were collected using the xenon gas and sodium iodide
gamma probes for 1800 seconds, and the 662-keV spectral energy peak of
Cs-137 was analyzed for resolution verification. The xenon spectral gamma
probe was found to provide 2.1 percent resolution (Figure 24), while the sodium
iodide spectral gamma probe was found to provide 8.5 percent resolution
(Figure 25) for the 662-keV spectral energy peak of CS-137.
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Figure 24. Xenon gas spectral gamma probe energy spectrum for 1 pCi Cs-137
and 1 pCi cobalt-60 laboratory sources; resolution for the Cs-137
662--keV spectral energy peak was 2.1 percent; acquisition period:
1800 seconds
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Figure 25. Sodium iodide spectral gamma probe energy spectrum for 1 uCi Cs-
137 and 1 pCi cobalt-60 laboratory calibration sources; resolution for
the Cs-137 662-keV spectral energy peak was 8.5 percent; acquisition
period: 1800 seconds
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6 Functionality Field
Demonstration

Pre-demonstration Field Evaluation

The spectral gamma probe system was installed in the SCAPS truck prior to
the field demonstration during late July 2003 and evaluated for functionality and
anomalous behavior. It was during these evaluation tests that the xenon gas
gamma detector was found to function properly for a period of time and then to
generate anomalous data. The manufacturer, after reviewing the data, hypothe-
sized that this was caused by high-voltage leakage and that the most likely cause
was moisture from the high humidly (80-95 percent) experienced during the test
period at the ERDC facility. The detector was removed from the system and
baked for approximately 4 hours at 150°F. It functioned properly upon being
reinstalled in the system. Anhydrous packing material was placed in the probe
adjacent to the xenon gas detector/preamplifier module. The spectral response
shown in Figure 26 is representative of system data collected after this procedure
was performed.

Functionality Demonstration Site Configuration

The SCAPS high-pressure xenon gas spectral gamma probe was evaluated
during a field demonstration at the ERDC facility in Vicksburg, Mississippi. The
ERDC SCAPS 20-ton truck was used to push a probe into the soil to a depth of
approximately 5 meters. The probe was retracted, leaving an open penetrometer
hole. The SCAPS truck was backed away from the push location to facilitate the
insertion of a 1.52-m-long x 5-cm-diameter polyvinyl chloride (PVC) pipe into
the hole. The PVC pipe was positioned in the hole to maintain sidewall integrity
of the penetrometer hole. The SCAPS truck was repositioned over the PVC pipe
so that the SCAPS xenon spectral gamma probe was approximately 15 ¢m from
the penetrometer hole. This offset in positioning was accomplished to provide a
push location parallel to the penetrometer hole. Two 1 pCi sealed Cs-137 labo-
ratory sources were attached to a nylon line and lowered in the penetrometer hole
and tethered at a depth of approximately 1.5 meters. In this manner, the SCAPS
xenon spectral gamma probe could be pushed parallel to the penetrometer hole
and could interrogate the soil vertically for gamma activity. At a depth of
1.5 meters, the SCAPS xenon spectral gamma probe would be in position to
detect and speciate Cs-137 gamma activity through approximately 15 cm of
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Vicksburg loess soil. A concept drawing of the experimental field configuration
is presented in Figure 27. This method of evaluation simulates the xenon spectral
gamma probe detecting a point source of radioactive material in soil. Similarly, a
uniform distribution of gamma-emitting radionuclides in soil will provide gamma
emissions toward the probe from all directions.
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Figure 26. Cs-137 energy spectrum collected with the high-pressure
xenon gas spectral gamma probe after baking

Tethered Source

Figure 27. Functionality demonstration site configuration used to evaluate
the SCAPS high-pressure xenon gas spectral gamma probe in
subsurface media (the sphere represents the area of influence
around the detector)
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Continuous-Push Data Acquisition

The initial field evaluation was conducted to determine the capability of the
xenon spectral gamma probe to detect gamma spectra and gross gamma activity
during a continuous push. The data acquisition system was programmed to col-
lect a continuous spectrum every 10 seconds of live detector time and to collect
gross gamma activity in counts/second in real time as the probe was pushed into
subsurface media. No discernable peak was seen during the push as the probe
pushed parallel to the 2 pCi Cs-137 source tethered at approximately 1.5 m
depth. Vibration attributed to the SCAPS truck engine and PTO-powered gen-
crator system was transferred via the SCAPS hydraulic clamping system into the
penetrometer probe. The operation of the truck engine and PTO system during
real-time continuous-push data acquisition prevented discernable gamma detec-
tion due to vibration-induced electronic noise (Figure 28).

02 006.CHN [ THIS IS SAMPLE 006. )]

BT I P 1 s P

Figure 28. Continuous xenon spectral gamma probe energy spectrum collected
as the probe was push parallel to the tethered Cs-137 source at
approximately 1.5 m depth; acquisition period: 10 seconds

Stationary-Mode Data Acquisition

The SCAPS truck’s hydraulic ram and hydraulic chuck systems were used to
push the xenon gas spectral gamma probe to a selected depth for a stationary-
mode interrogation of subsurface media. Various stationary modes of operation
(i.e., truck/probe configurations) were investigated to determine if truck-induced
vibration and the associated electronic noise could be minimized or eliminated
from the xenon gas spectral gamma probe data acquisition system.
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Configuration 1: Data acquisition was conducted at a depth of 1.5 m with a
2-uCi Cs-137 source tethered at approximately 1.5 m depth. The SCAPS truck
pushed the xenon gas spectral gamma probe to the interrogation depth of 1.5 m.
The SCAPS truck’s hydraulic clamp was engaging the xenon gas spectral gamma
probe during data acquisition. In this configuration, the SCAPS truck engine was
running, and the data acquisition system was powered by the SCAPS truck’s
PTO-powered generator system. Electronic noise was less than the noise gener-
ated during continuous-push operations. However, leaving the probe clamped to
the truck hydraulic system while the truck continued to run resulted in an unac-
ceptable level of electronic noise (Figure 29).
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Figure 29. Xenon gas spectral gamma probe logarithmic energy spectrum of two
1-pCi Cs-137 sources collected at a depth of 1.5 m through 15 cm of
soil; probe was in stationary-mode configuration 1; acquisition period:
300 seconds

Configuration 2a: Data acquisition was conducted at a depth of 1.5 m with a
2-uCi Cs-137 source tethered at approximately 1.5 m depth. The SCAPS truck
pushed the xenon gas spectral gamma probe to the interrogation depth of 1.5 m.
The SCAPS truck’s hydraulic clamp was disengaged from the xenon gas spectral
gamma probe during data acquisition. In this configuration, the SCAPS truck
engine was running, and the data acquisition system was powered by the SCAPS
truck’s PTO-powered generator system. Electronic noise was less than the noise
generated during continuous-push operations but not appreciably less than in
Configuration 1. The Cs-137 gamma peak highlighted in red is better resolved
than the cesium gamma peak in Figure 29. However, leaving the truck engine
running during data acquisition transmitted vibration energy through the soil into
the probe. Hence, configuration 2a was not acceptable for shallow subsurface
interrogation depths since substantial electronic noise continued to be present in
the data (Figure 30).
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Figure 30. Xenon gas spectral gamma probe logarithmic energy spectrum of two
1-uCi Cs-137 sources collected at a depth of 1.5 m through 15 cm of
soil; probe was in stationary-mode configuration 2a; acquisition
period: 300 seconds

Configuration 2b: Data acquisition was conducted at a depth of 13.71 m with
a 2-uCi Cs-137 source tethered at approximately 1.5 m depth. The SCAPS truck
pushed the xenon gas spectral gamma probe to the interrogation depth of
13.71 m. The SCAPS truck’s hydraulic clamp was disengaged from the xenon
gas spectral gamma probe during data acquisition. In this configuration, the
SCAPS truck engine was running, and the data acquisition system was powered
by the SCAPS truck’s PTO-powered generator system. Due to the 12.21 m of
soil separating the xenon gas gamma detector from the Cs-137 source, the Cs-137
spectral gamma peak at 662 keV was not detected. However, leaving the truck
engine running during data acquisition at this depth did not produce truck-
vibration-induced electronic noise because the soil dampened the effects of
SCAPS truck vibration. Even though no gamma activity was detectable, Configu-
ration 3 provided an acceptable configuration for subsurface interrogations
(Figure 31).

The SCAPS truck’s hydraulic ram and hydraulic clamp systems were used to
reposition the probe at a depth of 1.5 m. A series of configurations were evalu-
ated to determine an optimum configuration for shallow-depth subsurface inter-
rogations for gamma activity and radionuclide speciation.

Configuration 3: Data acquisition was conducted at a depth of 1.5 m with a
2-pCi Cs-137 source tethered at approximately 1.5 m depth. The SCAPS truck’s
hydraulic clamp was disengaged from the xenon gas spectral gamma probe dur-
ing data acquisition, and the SCAPS truck engine was turned off. The SCAPS
data acquisition system was powered by a portable generator. Electronic noise
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was negligible, and the Cs-137 gamma peak (highlighted) was resolved
(Figure 32).
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Figure 31. Xenon gas spectral gamma probe energy spectrum of clean soil
acquired at a depth of 13.71 m; probe was in stationary-mode
configuration 2b; acquisition period: 348.6 seconds
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Figure 32. Xenon gas spectral gamma probe energy spectrum of two 1-uCi
Cs-137 sources collected at a depth of 1.5 m through 15 cm of soil;
probe was in stationary-mode configuration 3; acquisition period:
300 seconds
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7 Conclusions

Conclusions are as follows:

a. ERDC successfully integrated a Mirmar-developed high-pressure xenon
gas gamma detector in an ERDC-designed and -fabricated SCAPS multisensor
spectral gamma penetrometer probe with soil classification sensing capabilities.

b.  The xenon detector with an internal grid configuration was found to be
sensitive to vibration during laboratory evaluation experiments. Foam material
was successfully used to minimize the effects of laboratory vibration.

c.  ERDC successfully calibrated the SCAPS xenon spectral gamma
penetrometer probe at the Mississippi State University Radiological Sensor Cali-
bration Facility. Calibration was conducted in soil media spiked with short-lived
radioisotopes.

d. The xenon spectral gamma probe was found to provide 2.1 percent
resolution for the 662-keV spectral energy line of Cs-137 versus 8.5 percent
resolution for currently used sodium iodide spectral gamma probe technology.

e. The xenon spectral gamma probe with internal grid exhibited sensitivity
to vibration and unacceptable performance during functionality field demonstra-
tion continuous-push operations and for shallow-depth interrogations when the
stationary probe was attached to the SCAPS truck’s hydraulic ram and chuck
system.

/- The xenon spectral gamma probe with internal grid exhibited no sensitiv-
ity to vibration during functionality field demonstration for shallow-depth inter-
rogations when the stationary probe was disengaged from the SCAPS truck’s
hydraulic ram and chuck system and powered by a portable generator.

g The recommended operational mode for using the xenon spectral gamma
probe with internal grid is to push the xenon spectral gamma probe to an interro-
gation depth and release the probe from the SCAPS truck’s hydraulic ram and
chuck system. In this decoupled mode, the xenon probe successfully detects and
speciates (identifies) gamma-emitting radionuclides through 15 cm of subsurface
soil media and provides approximately 2.1 percent resolution through the probe
steel housing and soil media for Cs-137 at 662 keV. The functionality field
demonstration verified that the xenon spectral gamma probe may be used for
multiple interrogations at discrete depths to determine levels of subsurface
radionuclide contamination.

Chapter 7
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8 Recommendations

Recommendations are as follows:

a. Conduct xenon spectral gamma probe subsurface interrogations for
gamma energy detection and radionuclide speciation at discrete depths in a sta-
tionary decoupled mode of operation. Push the xenon spectral gamma probe to an
interrogation depth and release (decouple) the probe from the SCAPS truck’s
hydraulic ram and chuck system to isolate the probe from truck-induced
vibration.

b. Conduct shallow-depth xenon spectral gamma probe subsurface
interrogations for gamma energy detection and radionuclide speciation in a sta-
tionary decoupled mode of operation, with the SCAPS truck engine off, and with
a portable generator providing operational power.

c. Develop gridless xenon gas gamma detector technology to minimize the
effects of vibration on detector performance and to provide the capability to
detect gamma-emitting radionuclides during SCAPS continuous-probe push
operations.

Chapter 8 Recommendations
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